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Regiospeciflc Synthesis of Substituted Arenes. 
[3,3] Sigmatropic Rearrangement of 
Benzyl Vinyl Ethers1 

Sir: 

The [3,3] sigmatropic rearrangement of allyl vinyl ethers 
provides a versatile method for the construction of new carbon 
to carbon bonds with high regio- and stereospecificity under 
mild reaction conditions.2 Although the [3,3] sigmatropic 
rearrangement of allyl phenyl ethers is well examplified in the 
classic Claisen rearrangement,3 the [3,3] sigmatropic rear­
rangement of benzyl vinyl ethers 1 (W = H) is not generally 

Table I. Claisen Ortho Ester Rearrangement of Ethyl Mandelates 
(4) 

possible.4 Inspection of the putative intermediate 2 suggested 
to us that the [3,3] sigmatropic rearrangement of 1 should be 
facilitated by an appropriately selected and suitably positioned 
substituent W.5-6 

We are now pleased to report that the reaction of ethyl 
mandelate derivatives 4 in the Claisen ortho ester rearrange­
ment7-8 with 5 provides an extremely convenient method for 

CO2Et 

OH 
+ RR'CHC(OR") 

CO,Et 

CO,R 

R R 

the regiospecific synthesis of substituted arenes 6.9 The results 
of these studies are summarized in Table I.10 

Several noteworthy features of the above transformation 
follow: (1) a large assortment of substituted ethyl mandelates 

entry 

a 
b 
C 

d 
e 
f 
g 
h 
i 
J 

mandelate 
(4), X 

H 
H 
H 
Me 
Me 
MeO 
Cl 
Cl 
EtO2C 
EtO2C 

ortho ester (5) 
R 

H 
Me 
Me 
H 
Me 
H 
H 
Me 
H 
Me 

R' 

H 
H 
Me 
H 
H 
H 
H 
H 
H 
H 

R" 

Et 
Et 
Et 
Et 
Et 
Et 
Et 
Et 
Et 
Et 

reaction" 
conditions 

A 
B 
A 
B 
B 
C 
A 
B 
A 
B 

% yield6 

of 6 

84 
50 
41 
65 
47 
50 
30 
21 
33 
18 

" All reactions use 6 to 8 equiv of 5 and 0.1 equiv of hexanoic 
acid/equiv of 4. The reaction flask is fitted with a 15-cm Vigreux 
column during the first time period and a short-path distillation head 
during the second time period (see sample experimental procedure). 
Reaction conditions: A, 12 h at 220 0C, 8 h at 185 0C; B, 12 h at 220 
0C, 12 h at 185 0C; C, 5 h at 220 0C, 7 h at 185 0C. * See ref 10. 

Table II. Claisen Ortho Ester Rearrangement with 
3-Indoleglycolates 

entry 

a 
b 
c 
d 
e 

indole 7, W 

CO2Et 
CO2Et 
CO2Et 
CONMe2 
H 

R 

H 
H 
Me 
H 
H 

ortho ester 5 
R' 

H 
H 
H 
H 
H 

" 
R" 

Et 
Me 
Et 
Me 
Me 

% yield* of 8 

79 
48 <• 
40 
59 
d 

" All react ions use 30 equiv of 5 and 0.1 equiv of hexanoic ac id / 
equiv of 4. The reaction flask was filtered with a 15-cm Vigreux col­
umn topped with a shor t -path distillation head and was heated at re­
flux for 12 h, the Vigreux column was removed, and heat ing was 
cont inued at 185 0 C for 8 h. * See ref 10. c No ester exchange was 
detected. d The corresponding mixed ortho ester was isolated 
(90%).18 

4 1 ' and ortho esters 51 2 are readily available; (2) the reaction 
occurs for ethyl mandelates with either electron-donating or 
electron-withdrawing groups; (3) the reaction conditions are 
compatible with a wide array of functionality;13 (4) the reac­
tion provides a method for the regiospecific synthesis of sub­
stituted arenes14 that would be difficulty accessible by alter­
native methods; and (5) the carboethoxy groups are convenient 
handles for subsequent synthetic transformations. 

We have also extended this procedure to the Claisen ortho 
ester rearrangement of 5 with the 3-indoleglycolic acid de­
rivatives 7 (W = CO2Et or CONMe2)15-16 to give 2,3-disub-
stituted indoles 817 (Table II).1 0 The crucial influence of the 

CO,R 

R R 

carboxy derivative at the benzylic position in facilitating the 
[3,3] sigmatropic rearrangement is again illustrated by ex­
periments in which l-tosyl-3-indolemethanol (7, W = H) failed 
to undergo any detectable rearrangement with trimethyl or-
thoacetate under comparable reaction conditions, but led only 
to the corresponding mixed ortho ester.18 

It is notable that the 2,3-disubstituted indoles 8 contain both 
a two-carbon functionalized chain at the 3 position and an 
a-substituted carboxy group at the 2 position. These features 
are present in a number of indole alkaloids such as vincadine, 
vindoline, carbomethoxyvelbanamine, and catharanthine. We 
are currently investigating the application of the [3,3] sig-
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matropic rearrangement of 3-indoleglycolic acid derivatives 
as the key step in a general scheme for the total synthesis of 
indole alkaloids; further investigations concerning the use of 
the [3,3] sigmatropic rearrangement for the regiospecific 
synthesis of other substituted arenes are also in progress. 
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Direct Observation of Radical Intermediates in the 
Photo-Kolbe Reaction—Heterogeneous Photocatalytic 
Radical Formation by Electron Spin Resonance 

Sir: 

Many electroinitiated chemical reactions are thought to 
proceed via radical intermediates. For example, the widely 
studied Kolbe reaction of carboxylates1 is believed to follow 
the mechanism 

RCO2- - ^ [RCO2-] — R- + CO2 (1) 

2R- -»• R-R (and/or disproportionation) (2) 
—e 

R *• R+ —• carbonium ion products (3) 

The mechanistic details of this electrooxidative decarboxyla­
tion are still a matter of controversy.2 Not only does the hy­
pothetical primary product of electron transfer, the acyloxy 
radical (RCO2-), rapidly split into CO2 and a hydrocarbon 
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